Some Further Results for the Stationary Points and Dynamics of Supercooled Liquids

نویسندگان

  • David J. Wales
  • Jonathan P. K. Doye
چکیده

We present some new theoretical and computational results for the stationary points of bulk systems. First we demonstrate how the potential energy surface can be partitioned into catchment basins associated with every stationary point using a combination of Newton-Raphson and eigenvector-following techniques. Numerical results are presented for a 256-atom supercell representation of a binary Lennard-Jones system. We then derive analytical formulae for the number of stationary points as a function of both system size and the Hessian index, using a framework based upon weakly interacting subsystems. This analysis reveals a simple relation between the total number of stationary points, the number of local minima, and the number of transition states connected on average to each minimum. Finally we calculate two measures of localisation for the displacements corresponding to Hessian eigenvectors in samples of stationary points obtained from the Newton-Raphson-based geometry optimisation scheme. Systematic differences are found between the properties of eigenvectors corresponding to positive and negative Hessian eigenvalues, and localised character is most pronounced for stationary points with low values of the Hessian index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saddles in the energy landscape probed by supercooled liquids.

We numerically investigate the supercooled dynamics of two simple model liquids exploiting the partition of the multidimensional configuration space in basins of attraction of the stationary points (inherent saddles) of the potential energy surface. We find that the inherent saddle order and potential energy are well-defined functions of the temperature T. Moreover, by decreasing T, the saddle ...

متن کامل

namics of supercooled liquids ?

Europhysics Letters PREPRINT Are there localized saddles behind the heterogeneous dynamics of supercooled liquids? Abstract. – We numerically study the interplay between heterogeneous dynamics and properties of negatively curved regions of the potential energy surface in a model glassy system. We find that the unstable modes of saddles and quasi-saddles undergo a localization transition close t...

متن کامل

Supercooled liquids under shear: A mode-coupling theory approach

We generalize the mode-coupling theory of supercooled fluids to systems under stationary shear flow. Our starting point is the generalized fluctuating hydrodynamic equations with a convection term. The method is applied to a two dimensional colloidal suspension. The shear rate dependence of the intermediate scattering function and shear viscosity is analyzed. The results show a drastic reductio...

متن کامل

String-like Correlated Motion in Supercooled Liquids and Polymers

Title of dissertation: SPATIALLY HETEROGENEOUS DYNAMICS AND STRING-LIKE CORRELATED MOTION IN SUPERCOOLED LIQUIDS AND POLYMERS Yeshitila Gebremichael, Doctor of Philosophy, 2004 Dissertation directed by: Professor Sharon C. Glotzer Chemical Engineering Department University of Michigan, Ann Arbor, MI Professor John D. Weeks Chemical Physics Program University of Maryland, College Park, MD Dense ...

متن کامل

The Mode-Coupling Theory of the Glass Transition

We give a brief introduction to the mode-coupling theory of the glass transition, a theory which was proposed a while ago to describe the dynamics of supercooled liquids. After presenting the basic equations of the theory, we review some of its predictions and compare these with results of experiments and computer simulations. We conclude that the theory is able to describe the dynamics of supe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003